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Abstract 
 

 

Active networking offers a change in the usual network paradigm: from passive 

carrier of bits to a more general computing engine. Active networking not only allows 

the network nodes to perform computations on the data but also allow their users to 

inject customized programs into the nodes of the network, that may modify, redirect 

or store the user data flowing through the network.  

 

In this thesis, we focus on the benefits of active networking with respect to a problem 

that is unlikely to disappear in the near future: network congestion. Rather than 

applying congestion reduction mechanisms generically and broadly, we discuss the 

mechanism that allows each application to specify how losses to its data should occur 

in a controlled fashion. Congestion is a prime candidate for active networking, since 

it is specifically an intra-network event and is potentially far removed from the 

application. Further, the time that is required for congestion notification information 

to propagate back to the sender limits the speed with which an application can self-

regulate to reduce congestion.  

 

In this thesis, we propose a model for Active Congestion control, using active queue 

management. The SPIN verifier is used to check the correctness and completeness of 

the specification. 
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Chapter 1 - Introduction 

 

Active Networks 
 

Active networking[1] offers a change in the usual network paradigm : from  

passive carrier of bits to a more general computing engine. In an active network, 

nodes can perform computations on user data as it traverses the network.  Traditional 

data networks provide a transport mechanism to transfer bits from one end system to 

another, with a minimal amount of computation. In contrast, active networking not 

only allows the network nodes to perform computations on the data but also allow 

their users to inject customized programs into the nodes of the network, that may 

modify, redirect or store the user data flowing through the network. Moreover, active 

networking based solutions react faster to the changing dynamics of the network. 

 

In an active network, customized computations are performed by the routers 

or switches of the network on the messages flowing through them. Routers could also 

interoperate with legacy routers, which transparently forward datagrams in the 

traditional manner. These networks are called "active" in the sense that the nodes can 

perform computations on, and modify, the packet contents. Further, the processing 

can also be customized on a per user or per application basis, in contrast to the 

traditional packet networks, where the routers (though they modify the packet's 

header) pass the user data opaquely without examination or modification.  

 

The evolution of the active networks was triggered by the many shortcomings  

of the traditional networks that are in practice. The difficulty of accommodating new 

services in the existing architectural model, the poor performance due to redundant 

operations at several protocol layers and the difficulty of integrating new technologies 
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and standards into the shared network infrastructure are some of the problems faced 

by today's networks.  

 

There are several examples that have been cited as evidence that active 

networking technology is either needed or already exists in some form [2]: video 

gateways [3], that are capable of transcoding video as it passes from one part of the 

network to another; multicast routers, which selectively duplicate packets before 

forwarding them on links; firewalls[4], which selectively filter data passing into and 

out of an administrative domain, to name a few, that perform user-driven computation 

at nodes within the network. Further, in addition to these examples, widespread 

implementation of active networking is likely to enable radical new applications that 

cannot be foreseen today. 

 

In this thesis, we focus on the benefits of active networking with respect to a 

problem that is unlikely to disappear in the near future : network congestion. Rather 

than applying congestion reduction mechanisms generically and broadly, we discuss 

the mechanism that allows each application to specify how losses to its data should 

occur in a controlled fashion. Congestion is a prime candidate for active networking, 

since it is specifically an intra-network event and is potentially far removed from the 

application. Further, the time that is required for congestion notification information 

to propagate back to the sender limits the speed with which an application can self-

regulate to reduce congestion.  

 

Congestion Control Schemes 
 

The various congestion control schemes in use are discussed in this section.  

The congestion control schemes can be broadly classified into source based and 

gateway based schemes depending on where congestion is addressed. In the source-

based schemes, the end hosts observe how many packets are successfully transmitted 
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through the network and adjust their transmission rates accordingly. In the gateway-

based schemes, the congestion control mechanism is located at the gateways. 

 

 

Source based schemes 

 

In the source-based schemes, we discuss the slow start, congestion avoidance,  

fast retransmit and fast recovery.  

 Slow start and congestion avoidance 

 

When a sender injects multiple segments into the network, up to the window 

size  specified by the receiver, problems can arise if there are routers and slower links 

between the  sender and the receiver. It is possible that some intermediate router runs 

out of space. This is avoided using the slow start algorithm. It operates by observing 

that the rate at which new packets should be injected into the network is the rate at 

which the acknowledgements are returned by the other end. In this algorithm, 

whenever restarting after a loss, the congestion window is set to one packet and the 

minimum of the receiver's advertised window and the  congestion window is sent. 

Congestion avoidance  is a way to deal with lost packets. More details on slow start 

and congestion avoidance are in [5] and [6]. 

In these schemes, a sender is in one of the two modes: slow start or congestion 

avoidance. The two modes differ primarily in that the sending rate of data flow 

increases more aggressively in the former mode than in the latter. A sender is in slow-

start mode under two conditions: (1) when it first starts transmitting data and (2) 

immediately after a retransmission timeout. A sender shifts from the slow-start mode 

to the congestion-avoidance mode at  a certain threshold or immediately after a fast 

retransmit, which is discussed later in this paper. In the slow-start mode, the goal is to 

quickly fill an empty pipeline until the connection is approximately at equilibrium. 
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At that point, the sender shifts in to the less aggressive congestion-avoidance mode, 

which continues to probe the maximum network capacity. Evidently, the choice of the 

threshold, which is essentially an approximation of the equilibrium point of the 

connection, is the key to the performance of these schemes.  

 In practice, slow start and congestion avoidance are implemented together. To 

implement these congestion control and avoidance schemes, the sender keeps track of 

three variables: snd_wnd, cwnd, and ssthresh. Snd-wnd is the window size advertised 

from the receiver to sender. This advertised window size gives the sender an estimate 

of the available window at the receiver. Cwnd is the congestion window, and ssthresh 

is the slow-start threshold, which determines when a sender shifts from the slow start 

mode into the congestion avoidance mode. 

 In slow-start mode, cwnd is initialized to one segment. Each time an ACK is 

received, cwnd is incremented by one segment. At any point, the sender sends the 

minimum of snd_wnd and cwnd. Thus, cwnd reflects flow control imposed by the 

sender, and snd_wnd is flow control imposed by the receiver.  

 From the above description, we find that cwnd increases exponentially. To be 

more specific, assuming that the ACK's are not delayed, the sender starts by 

transmitting one segment and waiting for its ACK. When the ACK is received, cwnd 

is incremented from one to two, and two segments are sent. When each of the two 

segments is acknowledged, cwnd is incremented by one. The value of cwnd becomes 

four. This exponential pattern continues similarly until cwnd becomes greater than or 

equal to ssthresh. From then on, the sender shifts into the congestion avoidance mode.  

 A retransmission timeout or the reception of three duplicate ACKs indicates 

congestion. When congestion is detected, ssthresh, which dictates when the sender 

changes from slow-start mode to congestion-avoidance mode, is adjusted to one-half 

of the current window ( the minimum of snd_wnd and cwnd). This makes sense in 

most cases, since the detection of congestion implies that the current threshold is too 

high. The sender is too aggressive and thus is losing packets. The threshold is lowered 

so that the sender shifts from exponential increase of its congestion window to 
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additive increase sooner in hope that the sender can slow down enough to avoid 

congestion in future. 

Delayed acknowledgement  

 

 Here, TCP does not send an ACK the instant it receives a packet. Instead, it 

delays the ACK, so that if there is data going the same direction as the ACK, the 

ACK can be sent along, or 'piggyback' with the data. An exception is when out-of-

order segments are received. In such cases, a duplicate ACK is generated 

immediately.  Now let us discuss the effects of delayed acknowledgement, 

specifically in the exponential increase of slow start. In this phase, an ACK of in-

order segments triggers more segments to be sent. The number of segments triggered 

is determined by the number of segments that were just acknowledged plus one more 

segment(as the congestion window is increased by one segment per ACK).  

 Without delayed ACK's , every ACK received acknowledges 1 segment and 

triggers two additional segments to be sent. However, with delayed ACK, segments 

are acknowledged in pairs, so every ACK for two segments received triggers three 

segments to be sent. Thus, the exponential expansion of the congestion window is 

slower when ACK's are delayed. Evidently, acknowledging every packet allows the 

'pipe' to be filled more quickly. However, this aggressiveness does not automatically 

translate into higher throughput, because acknowledging every packet expands the 

congestion window faster. Such expansion leads to buffer overflow and thus packet 

losses. Thus, the sender must wait for retransmit timeouts, since multiple losses in 

one round-trip time may not be recoverable by fast retransmit. 

 Here, it is found that although acknowledging every packet allows the sender 

to open up the congestion window faster and thus to pump segments into the network 

faster, the sender also loses more packets as a result of aggressiveness. 

Fast retransmit and fast recovery 
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 When an out-of-order segment is received, a duplicate ACK is sent to let the 

other end know that a segment was received out of order, and to tell it what sequence 

number is expected. In fast retransmit mechanism, based on the duplicate ACK's, an 

educated prediction is made about which segment is missing. Without this 

mechanism, the sender would have to wait for a long retransmission timeout, which is 

on the order of seconds, before it would detect that a segment was lost. Under the fast 

recovery mechanism, the sender enters the congestion-avoidance instead of the slow-

start mode after a fast retransmit.  

 If three or more duplicate ACKs are received in a  row, TCP performs 

retransmission of what appears to be the missing segment ( the segment starting with 

the sequence number immediately after the number acknowledged by the duplicate 

ACK's), without waiting for a retransmission timer to expire.  Thus, TCP first lowers 

ssthresh to half of the window size to avoid future congestion and retransmits the 

missing segment. This is accomplished by adjusting the snd_nxt to that sequence 

number and closing down cwnd to one segment and calling tcp_output(). After the 

output is done, cwnd is readjusted to the highest sequence number that is outstanding 

so far on the connection(snd_max). This is so that the sender can continue to send 

new data.  

 After fast retransmit sends what appears to be the missing segment, 

congestion avoidance, but not slow start is performed. This is the fast recovery 

algorithm. The fast recovery mechanism refers to the way cwnd and ssthresh are 

adjusted so that the sender enters the congestion-avoidance mode after a fast 

retransmit. The fast retransmit and fast recovery algorithms are usually implemented 

together.  

Forward Acknowledgement  

   

 The FACK congestion control algorithm addresses many of the performance 

problems observed in the Internet. The FACK algorithm is based on first principles of 

congestion control and is designed to be used with the proposed TCP SACK option. 
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By decoupling congestion control from other algorithms such as data recovery, it 

attains more precise control over the data flow in the network.  

 

 SACK, which is more of an address recovery method, helps TCP to survive 

multiple segment losses within a single window without incurring a retransmission 

timeout. When the receiver holds non-contiguous data, it sends duplicate ACKs 

bearing SACK options to inform the sender which segments have been correctly 

received. Each block of contiguous data is expressed in the SACK option using the 

sequence number of the first octet of data in the block and the sequence number of the 

octet just beyond the end of the block. In the new SACK option the first block is 

required to include the most recently received segment. Additional SACK blocks 

repeat previously sent SACK blocks, to increase robustness in the presence of lost 

ACKs. A SACK implementation, which uses the FACK congestion control 

algorithm, is referred to as 'FACK'.  

 The FACK algorithm uses the additional information provided by the SACK 

option to keep an explicit measure of the total number of bytes of data outstanding in 

the network. Since it accurately controls the outstanding data in the network, it is less 

bursty. Furthermore, since FACK uniformly adheres to basic principles of congestion 

control, it may be possible to produce formal mathematical models of its behavior and 

to support further advances in congestion control theory [7] 

 
Gateway based schemes 
 

 The problem with the end to end congestion control schemes is that the 

presence of congestion is detected through the effects of congestion rather than the 

congestion itself.  Hence it is logical to place the congestion control mechanism at the 

location of the congestion, i.e., the gateways. The gateway knows how congested it is 

and can notify sources explicitly, either by marking a congestion bit, or by dropping 

packets. The main drawback to marking packets with a congestion bit, as opposed to 

simply dropping them, is that TCP makes no provision for it currently. Floyd in [8] 
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states that some have proposed sending Source Quench packets as ECN messages. 

Source Quench messages have been criticized as consuming network bandwidth in a 

congested network making the problem worse. A few ways in which gateways notify 

the source of congestion are random early detection and explicit congestion 

notification. 

 The main goal of a congestion avoidance mechanism at the gateway is to 

detect incipient congestion.  A congestion avoidance scheme maintains the network in 

a region of low delay and high throughput.  The average queue size should be kept 

low, while fluctuations in the actual queue size should be allowed to accommodate 

bursty traffic and transient congestion.  Because the gateway can monitor the size of 

the queue over time, the gateway is the appropriate agent to detect incipient 

congestion. Because the gateway has a unified view of the various sources 

contributing to this congestion, the gateway is also the appropriate agent to decide 

which sources to notify this congestion.  

 The second goal of a congestion avoidance gateway is to decide which 

connections to notify of congestion at the gateway. If congestion is detected before 

the gateway buffer is full, it is not necessary for the gateway to drop packets to notify 

sources of congestion. The gateway marks a packet, and notifies the source to reduce 

the window for that connection.  

 

Explicit Congestion Notification 
 

 The reliance on packet drops as the indication of congestion is perfectly 

appropriate for a network with routers whose main function is to route packets to the 

appropriate output port. With the DecBit scheme discussed later in this chapter, 

routers detect incipient congestion by computing the average queue size, and set the 

ECN bit in packet headers when the average queue size exceeds a certain threshold.  

For networks with mechanisms for the detection of incipient congestion, the use of 

ECN mechanisms for the notification of congestion to the end nodes prevents 
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unnecessary packet drops. For bulk-data connections, the user is concerned only with 

the arrival time of the last packet of data, and delays of individual packets are of no 

concern.  For some interactive traffic, however, such as telnet traffic, the user is 

sensitive to the delay of individual packets. For such low-bandwidth delay-sensitive 

TCP traffic, unnecessary packet drops and packet retransmissions can result in 

noticeable and unnecessary delays for the user. For some connections, these delays 

can be exacerbated by a coarse-granularity TCP timer that delays the source's 

retransmission of the packet. 

 A second benefit of ECN mechanisms is that with ECN, sources can be 

informed of congestion quickly and unambiguously, without the source having to 

wait for either a retransmit timer or three duplicate ACKs to infer a dropped packet. 

For bulk-data TCP connections, the congestion window is generally sufficiently large 

that the dropped packet is detected fairly promptly by the Fast retransmit procedure. 

But, for those  cases where a dropped packet is not detected by the Fast retransmit 

procedure, the use of ECN mechanisms an improve a bulk-data connection's response 

to congestion.  Some of the ECN mechanisms in TCP/IP networks are source quench 

messages and DecBit's ECN bit.  Further discussions on ECN mechanisms are found 

in [8].  Floyd [8] identifies two problems with their scheme: non-compliant sources 

and the loss of ECN messages.  The problem of a non-compliant source is a hazard 

for any congestion control algorithm. If there can be a source that ignores ECN 

messages, there could also be a source that does not respond to packet drops.  

However, with a congestion control scheme that uses packet drops to control 

congestion, any source interested in maximizing throughput cannot ignore packet 

drops.  The author states non-compliant connections can cause problems in non-ECN 

environments as well as in ECN environments.  With regards to ECN message loss, 

since the RED gateway (discussed later) continually sets ECN bits while congestion 

persists the loss of an ECN message will not fundamentally affect the algorithm. 

 One major hurdle to the application of this algorithm to TCP is the 

incremental deployment of ECN capable gateways and sources.  One proposed 
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solution is to provide two bits in the header to indicate ECN compliance and the 

presence of congestion.  This can also be done with one bit, where 'off' represents 

ECN capability and 'on' would represent either no ECN capability or congestion 

notification.  When a gateway marks a packet with the bit 'off' it simply switches the 

bit 'on'. If the gateway wants to mark a packet with the bit 'on' it simply discards it. 

Notice that the one bit scheme would not work for two-way traffic where data packets 

travel in one direction and ACKs in the other. If a congested node sets the ECN bit 

for one packet, as the ACK returns to that node, it will be discarded.   

  

ICMP Source Quench  
 

 The ICMP Source Quench is the only congestion control mechanism in the 

Network Layer of the TCP/IP protocol suite.  Both routers and hosts play a part in the 

mechanism to control congestion.  When a router believes itself to be congested, it 

sends 'Source Quench' packets back to the source of the packets causing the 

congestion.  The Source quench ICMP tells the source to cut back the rate at which it 

is sending data. On receipt of these packets, the host should throttle its data rate so as 

to prevent router congestion. The host continues to receive source Quench ICMPs 

until the source is sending at an acceptable speed.  

 This mechanism suffers from many deficiencies in both the effectiveness of 

the mechanism and the specification of its implementation.  Its effectiveness is flawed 

due to two problems: (1) it does not clearly state how a router or destination decides 

when it is congested, who to send a source quench message to, how often to send 

source quench messages and when to stop and (2) it does not clearly state how a host 

should react to a source quench message, by how much it should reduce its output 

rate, if it should inform upper layers in the network stack, and how to properly 

increase its output rate in the absence of source quench messages.  Even worse, a 

router or destination may be congested and not send any source quench messages.  

Sources in receipt of a source quench message cannot determine if a router or 
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destination dropped the datagram that caused the source quench message.  The source 

also does not know to what rate it should reduce its transmission to prevent further 

source quench messages.   

 Thus, it can be seen that this is a rudimentary congestion control method, 

which is loosely specified, and can lead to badly behaved operation across different 

implementations.  It may not limit a source's transmission rate, depending on the 

transport protocol and it may drop packets unfairly. 

 

 

The Dec Bit Mechanism 
 

 The Dec Bit mechanism, also known as the Congestion Indication mechanism, 

is a binary feedback congestion avoidance mechanism developed for the Digital 

Network Architecture at DEC and has since been specified as the congestion 

avoidance mechanism for the ISO TP4 and CLNP transport and network protocols.   

 In Dec Bit, all network packets have a single bit, the 'Congestion Experienced 

Bit', in their headers.  Sources set this bit to zero.  If the packet passes through a 

router that believes itself to be congested, it sets the bit to a one.  Acknowledgement 

packets from the destination return the received Congestion Experienced Bit to the 

source.  If the bit is set, the source knows there was some congestion along the path to 

the destination, and takes remedial action.  In DECNET, the source adjusts its 

window size.  In TP4, the destination alters the advertised window size, rather than 

returning the bit to the source. 

 

Random drop  
 

 Random drop is a mechanism by which a router is able to randomly drop a 

certain fraction of its input traffic when a certain condition is true.  The premise of 

random drop is that the probability of a randomly chosen packet belonging to a 
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particular connection is proportional to the connection's rate of traffic.  The main 

appeal of random drop is that it is stateless.  A router using random drop does not 

have to perform any further parsing of packet contents to implement the mechanism.   

 Random drop can be used as either a congestion recovery or a congestion 

avoidance mechanism.  In the former, a router randomly drops packets when it 

becomes overloaded.  In the latter, packets are randomly dropped to keep the router at 

its optimum power position.   

 Random drop depends heavily on packet sources interpreting packet loss as an 

indicator of network congestion.  Since TCP makes this interpretation, it may be 

useful in the TCP environment.  A problem in random drop is that it does not 

distinguish between 'well-behaved' and 'ill-behaved' sources.  Packets are dropped for 

sources that are congesting a router, and for sources that are not congesting a router.  

Similarly, for low-rate connections such as keyboard 'telnet' connections, the loss of 

one packet may be a significant loss of the connection's overall traffic.   

 When random drop is used for congestion recovery, instead of dropping the 

packet that causes the input buffer to overflow, a randomly chosen packet from the 

buffer is dropped.  Mankin [9] analyses Random Drop Congestion Recovery 

theoretically and as implemented in a BSD 4.3 kernel.  She notes that RDCR is 

valuable only if the full buffer contains more packets for high-rate traffic flows than 

for low-rate traffic flows, and that packet arrivals for each source are uniformly 

distributed.  In reality, Mankin notes that correlations such as packet trains and TCP 

window operations make the distribution non-uniform.   

 Floyd et. al [10] note that Drop Tail can unfairly discriminate against some 

traffic flows where there are phase differences between competing flows that have 

periodic characteristics.  Their analysis shows that Random Drop can alleviate some 

of this discrimination, and led to the development of Random Early Detection.  

 

Random Early Detection 
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 Random early detection is a form of random drop used as congestion 

avoidance.  A RED router randomly drops incoming packets when it believes that it is 

becoming congested, implicitly notifying the source of network congestion by the 

packet loss.   

 While the principles behind RED gateways are fairly general, and RED 

gateways can be useful in controlling the average queue size even in a network where 

the transport protocol can not be trusted to be cooperative, RED gateways are 

intended for a network where the transport protocol responds to congestion 

indications from the network.  The gateway congestion control mechanism in RED 

gateways simplifies the congestion control job required of the transport protocol, and 

should be applicable to transport-layer congestion control mechanisms other than the 

current version of TCP, including protocols with rate-based rather than window-based 

flow control.  However, some aspects of RED gateways are specifically targeted to 

TCP/IP networks.  The RED gateway is designed for a network where a single 

marked or dropped packet is sufficient to signal the presence of congestion to the 

transport-layer protocol.  This is different from the DecBit congestion control 

scheme, where the transport-layer protocol computes the fraction of arriving packets 

that have the congestion indication bit set.   

 The RED gateway calculates the average queue size, using a low-pass filter 

with an exponential weighted moving average.  The average queue size is compared 

to two thresholds, a minimum threshold and a maximum threshold.   

 When the average queue size is less than the minimum threshold, no packets 

are marked.  When the average queue size is greater than the maximum threshold, 

every arriving packet is marked.  If marked packets are in fact dropped, or if all 

source nodes are cooperative, this ensures that the average queue size does not 

significantly exceed the maximum threshold.  When the average queue size is 

between the minimum and the maximum threshold, each arriving packet is marked 

with probability pa, where pa is a function of the average queue size avg.  Each time 

that a packet is marked, the probability that a packet is marked from a particular 
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connection is roughly proportional to that connection's share of the bandwidth at the 

gateway. 

 

Thus the RED gateway has two separate algorithms.  The algorithm for computing 

the average queue size determines the degree of burstiness that will be allowed in the 

gateway queue.  The algorithm for calculating the packet-marking probability 

determines how frequently the gateway marks packets, given the current level of 

congestion.  The goal is for the gateway to mark packets at fairly evenly spaced 

intervals, in order to avoid biases and to avoid global synchronization, and to mark 

packets sufficiently frequently to control the average queue size.   

 There are several significant differences between DecBit gateways and the 

RED gateways.  The first difference concerns the method of computing the average 

queue size.  Because the DecBit scheme chooses the last ( busy + idle) cycle plus the 

current busy period for averaging the queue size, the queue size can sometimes be 

averaged over a fairly short period of time.  In high-speed networks with large buffers 

at the gateway, it would be desirable to explicitly control the time constant for the 

computed average queue size; this is done in RED gateways using time-based 

exponential decay.   

 A second difference between DecBit gateways and RED gateways concerns 

the method for choosing connections to notify of congestion.  In the DecBit scheme, 

there is no conceptual separation between the algorithm to detect congestion and the 

algorithm to set the congestion indication bit.  When a packet arrives at the gateway 

and the computed average queue size is too high, the congestion indication bit is set 

in the header of that packet.  Because of this method for marking packets, DecBit 

networks can exhibit a bias against bursty traffic; this is avoided in RED gateways by 

using randomization in the method for marking packets, which further avoids the 

global synchronization that results from many TCP connections reducing their 

window at the same time.   
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What is Active Congestion Control? 
 

The Active Congestion Control system is used to make the feedback 

congestion control more responsive to network congestion, using the active 

networking technology. It extends the feedback congestion control system from the 

endpoints into the routers. Congestion is detected at the router, which also 

immediately begins reacting to congestion by changing the traffic that has already 

entered the network.  

 

In a conventional feedback system, the congestion relief starts from the sender 

and moves to the congestion node, as the sender's sending rate is reduced; here, the 

congestion relief starts at the congestion node and the  change in state that sustains 

that relief propagates out to the endpoint. 

 

Feedback-based congestion control systems lack scalability with respect to 

network bandwidth and delay since increases in either quantity de-couples the 

congestion site and endpoint. The larger the end-to-end delay in a network, the longer 

until the endpoint can determine that the network has become congested. The higher 

the bandwidth of the network, the larger the amount of data the endpoint may send 

into a congested network in the time it takes the endpoint to detect the congestion. It 

has been shown that under feedback-based congestion control, the duration of 

congestion at the bottleneck of a connection is directly related to the bandwidth-delay 

product. 

 

Active networking, with the idea of reprogramming routers with data packets, 

can be used to address this shortcoming of feedback control. Active Congestion 

Control moves the endpoint congestion control algorithms into the network where 

they can immediately react to congestion. The current state of the endpoint's feedback 



  
  

16

algorithm is included in every packet. When a router experiences congestion, the 

router calculates the new window size that the endpoint would choose if it had 

instantly detected the congestion. The router then informs the endpoint of its new 

state. Internal network nodes beyond the congested router see the modified traffic 

from the router, which seems as if the endpoint had instantly reacted. 

 

Active congestion control reduces the duration of each congestion event, and 

since fewer endpoints experience congestion during each congestion event, it 

improves the aggregate throughput. This is very effective in high-speed networks 

(which have a high bandwidth-delay product). Further, since fewer endpoints see 

congestion in ACC, and hence reduce their sending rate, the oscillations of the system 

as a whole is reduced.  

 

Thesis organization 
 
The thesis is organized as follows. Chapter 2 discusses the related work in the field of 

congestion control and then describes the motivation of this thesis work. Chapter 3 

explains the verification of protocol models and then looks into the SPIN model 

checker used in this thesis work. Chapter 4 describes the difference between 

congestion control and congestion avoidance. It also describes the various component 

modules in the proposed active congestion control scheme. It further presents the 

finite state machine models of each component. Chapter 5 is devoted to the 

specification and verification of the Active Congestion Control framework using 

SPIN and Promela. The terminology used and the message parameters are explained 

here. It also explains how SPIN is used to test and verify correctness, completeness 

and consistency properties. The final section summarizes the work done in this thesis 

and discusses future work.  The thesis ends with the Bibliography. 
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Chapter 2: Related Work 
 

The end to end congestion control mechanisms of TCP have been a critical factor in 

the robustness of the Internet. However, the Internet is no longer a small, closely knit 

user community, and it is no longer practical to rely on all end-nodes to use end-to-

end congestion control for best-effort traffic.  Similarly, it is no longer possible to rely 

on all developers to incorporate end-to-end congestion control in their Internet 

applications. The network itself must now participate in controlling its own resource 

utilization. Sally Floyd and Kevin Fall [23] consider the potentially negative impacts 

of an increasing deployment of non-congestion-controlled best-effort traffic on the 

Internet. These negative impacts range from extreme unfairness against competing 

TCP traffic to the potential for congestion collapse. To promote the inclusion of end-

to-end-congestion control in the design of future protocols using best-effort traffic, 

they argue that router mechanisms are needed to identify and restrict the bandwidth of 

selected high-bandwidth best-effort flows in times of congestion. They discuss 

several general approaches for identifying those flows suitable for bandwidth 

regulation. These approaches are for identifying a high-bandwidth flow in times of 

congestion as unresponsive, non TCP-friendly, or simply using disproportionate 

bandwidth. A flow that is not TCP-friendly is one whose long-term arrival rate 

exceeds that of any conformant TCP in the same circumstances.  

 

Bernhard Suter, T.V.Lakshman, Dimitrios Stiliais and Abhijit Choudhury [24]  

present mechanisms for active buffer management that improve TCP performance in 

a per-flow queuing system 

 

Samrat Bhattacharyajee et al. [22] have considered a range of schemes for processing 

application data during congestion, including unit level dropping, media 

transformation and multi-stream interaction. They have also presented some 

architectural considerations for a simple approach, in which packets are labeled to 
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indicate permitted manipulations. Their results suggest that congestion control makes 

a good case for active networking, enabling schemes that are not possible within the 

conventional view of the network. 

 

In the University of Southern California, Ted Faber has simulated studies of  an 

active congestion control system based on TCP congestion control mechanisms [21].  

The active system and the standard TCP congestion control in networks with and 

without bursty cross traffic have been simulated and compared. They have shown that 

when bursty cross-traffic is added, the active system shows as much as an 18% 

throughput improvement. All the simulations were made using ns, a simulator 

produced by the University of California Berkeley, the Lawrence Berkeley National 

Labs, and the Virtual InterNet project. They have extended the simulator to 

implement the ACC algorithms in the routers and endpoints, but not to allow full AN 

programmability. The modified simulator does not compile or interpret code from 

simulated packets. 

 

Our Approach - Motivation  
 

There are several issues that have motivated this approach. The first one is that active 

networking, in its most general form, requires substantial changes in network 

architecture. To move the network in the direction of these changes, active 

networking must offer some benefits, assuming that functionality will not be added to 

end systems unless there is some benefit in doing so. Also, switch manufacturers and 

network operators will not upgrade their switches to support active networking unless 

there is ultimately some benefit to their customers. 

 

Secondly, both computational power and transmission bandwidth will continue to 

increase, but so will the application requirements for bandwidth. In particular, we 

expect that network node congestion will be due to bandwidth limitations and that the 
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congested switches will still have considerable processing power, as compared to 

buffering, available. 

 

Finally, there will always be applications that prefer to adapt their behavior 

dynamically, rather than reserving bandwidth in advance, in order to match the 

available network bandwidth. This is based on several observations: (1) there will be 

times when the network rejects requests for bandwidth and the applications will have 

no choice. (2) The reserved bandwidth is likely to cost more. (3) The sending 

application's ability to trade processing for transmission bandwidth in reaction to 

congestion in the network increases as the computing speeds increase. 

 

 

We also know that the sender-adaptation model [6] that has worked well in the 

Internet, presents a couple of well-known challenges. The first one is the time interval 

required for the sender to detect congestion and adapt in order to bring losses under 

control and have the controlled-loss data propagate to the receiver. During this 

interval, the receiver experiences uncontrolled loss, resulting in a reduction in quality 

of service that magnifies the actual bandwidth reduction. As transmission and 

application bandwidths increase, this problem is exacerbated because propagation 

delays remain constant. 

 

Another challenge of sender adaptation is detecting an increase in available 

bandwidth. This problem, which is worse for continuous-media applications, arises in 

best-effort networks because loss is the only mechanism for determining available 

bandwidth. Hence, if a sender adapts to congestion by changing to a lossier encoding, 

it must detect the easing of congestion by periodically reducing compression and 

waiting for feedback from the receiver. In the case of long-lived congestion, this 

dooms the receiver to periodic episodes of uncontrolled loss. 
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Hence, we conclude that a useful application of active networking is to move those 

adaptations a sender might make into the network itself, in order to solve the above 

problems. Our aim is to ensure that, as far as possible, losses occur in a controlled and 

application-specific manner.  

 

In this thesis, we have verified the active congestion control framework. Verification 

is an extremely useful technique for early detection of design errors and also 

complements the design documentation. Verification also has the advantage that it 

forces the designer to reproduce all design decisions and thus also helps in finding 

logical errors.  

 

Summary 

 
In this chapter, we have discussed the related work and the motivation for this thesis 

work. In the next chapter, the various approaches for specification and verification of 

protocols have been discussed.  
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Chapter 3: Specification and Verification 

 

Introduction 
 

Active Networking enables users to customize network processing through the 

deployment of application-specific protocol frameworks into the nodes of the 

network. Injecting user-defined code into the network raises important issues 

regarding safety of the active nodes and the network in general. The performance and 

security of the network is compromised if the injected code contains inadvertent 

mistakes or if the protocol framework does not work as expected. A major 

requirement in such systems is to enable developers to construct protocol frameworks 

that operate reliably. 

Using formal methods of specification and verification increases the confidence of 

user-defined protocol frameworks. Specification is the process of describing a system 

and its properties. Formal specification uses a language with mathematically defined 

syntax and semantics. Properties described by the specification can include functional 

behavior, timing behavior, performance characteristics or internal structure. 

Verification is the process of mathematically proving the veracity of the specification.  

Formal specifications are simultaneously precise, concise and clear. They can be 

mechanically checked for both syntax and certain semantic “goodness” properties, 

helping designers to catch mistakes. Use of formal methods does not guarantee 

correctness. However, they can greatly increase confidence in the system by revealing 

inconsistencies, ambiguities and incompleteness that would have otherwise gone 

undetected. 
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Protocol Verification 
 

There has been a number of studies on protocol verification that deal with the issue of 

correctness of a given protocol specification by testing it for safety and liveness 

properties. Verification of safety properties guarantees that the protocol does not 

violate any constraints imposed or the system always ends in one of the valid end-

states determined by the designer.  Verification of liveness properties tests that the 

protocol does not deadlock and that it always makes progress. 

For the last two decades, verification techniques have been applied successfully in 

software and hardware engineering, especially in the communications protocol 

domain. Various techniques have been proposed, ranging from pure simulation to 

model checking. The widely used simulation techniques cannot cover all design 

errors, especially for large systems. Like testing techniques, they are used to detect 

errors, but not to prove the correctness of the design. During the past decade, model-

checking techniques have established themselves as significant means for design 

validation. A given design is validated against specific and general properties.  

There are two major approaches to verification of systems: model checking and 

theorem proving. In theorem proving, the proof that the design realizes the stated 

behavior is mechanically checked by a theorem prover. Theorem proving based 

verification efforts are known to be highly interactive. Model checking, on the other 

hand, can be fully automated. In model checking, a set of desired properties of a 

model of the design is stated in some form of logic and verified using a model 

checker for that logic.  Theorem provers operate at a high level that take axioms, pre-

conditions and generate proves. The disadvantage is that they require skilled 

intervention. Model checkers are more accessible tools. You provide a model, the 

model checker then tries everything the model can do and reports deadlocks if it finds 

any. 
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Theorem Proving 
 

Theorem proving is a technique where both the system and its desired properties are 

described in terms of algebraic or logical formulae. The logic is given by a formal 

system, which defines a set of axioms and a set of inference rules.  Theorem proving 

is the process of finding the proof of a property from the axioms of the system. 

Theorem provers rely on techniques like structural induction, rewrite-rules and proofs 

by contradiction to prove properties of systems. But finding proofs in theorem 

proving systems is a difficult process.  

Communication systems have the notion of state, which has to be embedded in the 

system model, for which theorem proving systems are not well equipped.  Further, 

theorem proving systems also require that the description of the system be abstracted 

so that the properties can be clearly specified. While useful for verification of the 

properties, a consequence of this strategy is that the implementation differs 

substantially form the specification. This makes it difficult to ascertain if the 

implementation preserves the properties expressed by the specification.  

 
Model Checking 
 

Model checking is a technique that relies on building a finite model of a system and 

checking that the desired property holds in that model. Generally, the check is 

performed as an exhaustive state space search that is guaranteed to terminate since the 

model is finite-space. In contrast to theorem proving, model checking is automatic 

and fast [13]. Model checking can be used to check partial specifications, and so it 

can provide useful information about a system’s correctness even if the system has 

not been completely specified.  

Two different fields of model checking have arisen: formal verification of software 

protocols and software systems, like SPIN [12] and formal verification of digital 

hardware.  
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The very first two temporal logic model checkers were EMC [13] and CAESAR. The 

SPIN system [18], [28], that has been used in this thesis, uses partial order reduction 

to reduce the state explosion problem [16].  There are other checkers, such as the 

behavior conformance checkers and combination checkers, roughly classified based 

on whether the specification they check is given as a logical formula or as a machine 

to eliminate unnecessary states from a system model. 

The main disadvantage of model checking is the state explosion problem. If the 

number of states is too large, the model checker requires unreasonable amount of time 

and memory to complete verification - this is known as the state-space explosion 

problem. In 1987, McMillan used Bryant’s ordered binary decision diagrams 

(BDDs)[14] to represent state transition systems efficiently, thereby increasing the 

size of the systems that could be verified. Other promising approaches to alleviating 

state explosion include the exploitation of partial order information [16], localization 

reduction [15] and semantic minimization [17] to eliminate unnecessary states from a 

system model. Thus, it is apparent that the advantages of using a model checking 

system for verifying communication protocol frameworks far outweigh its limitations. 

 

SPIN Model Checker 

 
SPIN is a generic model checking system that supports the design and verification of 

asynchronous process systems. SPIN verification models are proving the correctness 

of process interactions. Process interactions are specified using rendezvous and 

buffered message passing through channels and/or through access to shared variables. 

SPIN provides an intuitive, program-like input language called Promela [18, Gerald 

Holzmann 1997] for specifying design choices without implementation detail. It 

provides a powerful, concise notation for expressing general correctness requirements 
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and a methodology for establishing the logical consistency of the design choices 

using Promela and the matching correctness requirements. 

The typical model for working is to start with the specification of a high level model 

of a concurrent system, or distributed algorithm, typically using SPIN’s graphical 

front-end XSPIN. After fixing syntax errors, interactive simulation is performed until 

basic confidence is gained that the design behaves as intended. Then, in a third step, 

SPIN is used to generate an optimized on-the-fly verification program from the high 

level specification. This verifier is compiled, with possible compile-time choices for 

the types of reduction algorithms to be used, and executed. If any counterexamples to 

the correctness claims are detected, these can be fed back into the interactive 

simulator and inspected in detail to establish, and remove, their cause. 

The easiest way to get started with SPIN is to use the graphical interface Xspin. The 

graphical interface runs independently from SPIN itself, and helps by generating the 

proper SPIN commands based on menu selections. Xspin runs SPIN in the 

background to obtain the desired output, and wherever possible, it will attempt to 

generate a graphical representation of such output. Xspin knows when and how to 

compile code for the model checkers that SPIN can generate, and it knows when and 

how to execute it, so there is less to remember. 

The description of a concurrent system in PROMELA consists of one or more user-

defined process templates, or proctype definitions, and at least one process 

instantiation. The templates define the behavior of different types of process. Any 

running process can instantiate further asynchronous processes, using the process 

templates. SPIN translates each process template into a finite automaton. The global 

behavior of the concurrent system is obtained by computing an asynchronous 

interleaving product of automata, one automaton per asynchronous process behavior. 

The resulting global system behavior is itself again represented by an automaton. This 

interleaving product is often referred to as the state space of the system, and because 

it can easily be represented a s a graph, it is also commonly referred to as the global 

reachability graph.  
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SPIN performs the verification by taking the correctness claim that is specified as a 

temporal logic formula, converts that formula into a Buchi automaton, and computes 

the synchronous product of this claim and the automaton representing the global state 

space. The correctness claims ate used to formalize system behaviors that are 

undesirable and the verification process then either proves that such behaviors are 

impossible or it provides detailed examples of behaviors that match. SPIN’s 

verification procedure is based on an optimized depth-first graph traversal method. 

The cycle detection method used in SPIN is of central importance. The method is 

required to be compatible with all modes of verification, including exhaustive search, 

bit-state hashing, and partial order reduction techniques. 

 
Partial Order Reduction Method 
 

SPIN uses a partial order reduction method [16, Peled 1994] to reduce the number of 

reachable states that must be explored to complete a verification. The reduction is 

based on the observation that the validity of an LTL formula is often insensitive to the 

order in which concurrent and independently executed events are interleaved in the 

depth-first search. Instead of generating an exhaustive state space that includes all 

execution sequences as paths, the verifier can generate a reduced state space, with 

only representatives of classes of execution sequences that are indistinguishable for a 

given correctness property. The implementation of this reduction method is based on 

a static reduction technique, described in [19, Holzmann and Peled, 1994], that, 

before the actual verification begins, identifies cases where partial order reduction 

rules can safely be applied when the verification itself is performed. This static 

reduction method avoids the runtime overhead that has plagued partial order 

reduction strategies in the past. 

 
Supertrace Verification 
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To conserve memory while verifying models, SPIN’s supertrace or BitState 

verification technique is used as opposed to exhaustive search. This technique is used 

for large problem sizes that preclude exhaustive verification. It enables a high-

coverage approximation of the results of an exhaustive run that can be performed in 

relatively small amounts of memory. The algorithm uses 2 bits of memory to store a 

reachable state. The bit addresses are computed with two statistically independent 

hash functions. If storing one reachable system state requires S bytes of memory, and 

if the machine has M bytes of memory available, the model checker exhausts its 

available memory after generating M/S states. If the true number of reachable states, 

R, exceeds M/S, then the problem coverage of that verification run is M/(RxS).  

Under the same system constraints, the bit state hashing technique can produce an 

average problem coverage close to 1 (that is, approximately 100% coverage). In 

general, when M < RxS, the supertrace technique typically realizes a far superior 

problem coverage than standard exhaustive searches [20, Holzmann, June 1995]. 

 

Summary 

 
In this chapter, the various approaches for specification and verification of protocols 

have been presented and it has been found that the model-checking approach is the 

most suitable for our framework. In the next chapter, we describe the composition 

and verification of active congestion control framework. 
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Chapter 4: Active Congestion Control Framework 
 

Current networks require system-wide deployment whenever a new protocol is 

developed and is ready to be introduced in the network. But the current network 

infrastructure is rigid and fixed in the sense that developing and introducing new 

protocols in the network requires a time-consuming standardization process. Active 

networking provides a new paradigm in which the nodes of the network are 

programmable; that is, they provide an execution platform on which user code can be 

executed. Applications can customize network resources for dynamic adaptation by 

injecting the code in the network that is executed at the network nodes. In this 

chapter, we explain the Active Congestion Control Framework and its individual 

components. We also compare the concept of congestion avoidance with that of 

congestion control. Later, we look at the terminology used to describe the modules in 

the framework and the Finite State Machine Model of each module in detail. 

 

Congestion Avoidance and Congestion Control  

  

Congestion is a significant problem in computer networks today, due to increasing 

use of the networks, as well as due to increasing mismatch in link speeds caused by 

intermixing of old and new technology. Recent advances in technology have resulted 

in a significant increase in the bandwidths of computer network links. This causes a 

heterogeneity, as the new technologies much coexist with the old low bandwidth 

media and this results in mismatch of arrival and service rates in the intermediate 

nodes in the network, causing increased queuing and congestion. 
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Now, let us look at the difference between congestion avoidance and congestion 

control. Traditional congestion control schemes help improve the performance after 

congestion has occurred. Figure 1 shows the general patterns of throughput and 

response time of a network as the network load increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Response Time , throughput and power as a function of network load 
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If the load is small, throughput keeps up with the load. As the load increases, 

throughput increases. After the load reaches the network capacity, throughput stops 

increasing. If the load is increased any further, the queues start building, potentially 

resulting in packets being dropped. When the load is increased beyond this point, 

throughput drops suddenly and the network is said to be congested. The response time 

also follows a similar pattern. At first, the response time increases little with load. As 

the queues start building up, the response time increases linearly until finally, as the 

queues start overflowing, the response time increases drastically. The point at which 

throughput approaches zero is called the point of congestion collapse. At this point, 

the response time approaches infinity. The purpose of a congestion control scheme is 

to detect the fact that the network has reached the point of congestion collapse 

resulting in packet losses, and to reduce the load so that the network returns to an 

uncongested state. 

The point of congestion collapse is called a cliff, as the throughput falls off rapidly 

after this point. The term knee is used to describe the point after which the increase in 

the throughput is small, but after which a significant increase in the response time 

results. 

A scheme that allows the network to operate at the knee is called a congestion 

avoidance scheme, as distinguished from a congestion control scheme that tries to 

keep the network operating in the zone to the left of the cliff. A properly designed 

congestion avoidance scheme will ensure that the users are encouraged to increase 

their traffic load as long as this does not significantly affect the response time and are 

required to decrease the load if that happens. A congestion avoidance scheme allows 

a network to operate in the region of low delay and high throughput. These schemes 

prevent a network from entering the congested state in which the packets are lost. 

Congestion control schemes are still required, however, to protect the network should 

it reach the cliff due to transient changes in the network. 
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Thus, congestion control is a recovery mechanism, while congestion avoidance is a 

prevention mechanism. In other words, congestion control procedures are curative 

and the avoidance procedures are preventive in nature. The point at which a 

congestion control scheme is called upon depends upon the amount of memory 

available in the routers, whereas the point at which a congestion avoidance scheme is 

invoked is independent of the memory size.   

Mechanisms in Congestion avoidance/control 

 
Congestion control and congestion avoidance are dynamic system control issues.  

They have two parts like all other control schemes - a feedback mechanism and a 

control mechanism. 

Feedback mechanism: Allows the network to inform its users (sources or 

destinations) of the current state of the system. 

Control mechanism: Allows the users to adjust their loads on the system. In our 

model, this mechanism is present in the active router. 

The feedback mechanism has the following alternatives: 

1. Choke packet, where congestion feedback via packets sent from routers to 

sources. 

2. Feedback included in the routing messages exchanged among routers. 

3. End-to-end probe packet sent by sources. 

4. Reverse feedback, where each packet containing a congestion feedback field 

filled in by routers in packets is going in the reverse direction. 

5. Forward feedback, where each packet containing a congestion feedback field 

filled in by routers in packets is going in the forward direction. 

In the next section, the concept of active congestion control and how it has been 

modeled is explained. 
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 Active Congestion Control 
 

The Active Congestion Control (ACC) system is used to make the feedback 

congestion control more responsive to network congestion, using the active 

networking technology. ACC extends the feedback congestion control system from 

the endpoints into the routers. Congestion is detected at the router, which also 

immediately begins reacting to congestion by changing the traffic that has already 

entered the network. 

 

In a conventional feedback system, the congestion relief starts from the sender and 

moves to the congestion node, as the endpoint's sending rate is reduced; here, the 

congestion relief starts at the congestion node and the change in state that sustains 

that relief propagates out to the endpoint. 

 

Feedback-based congestion control systems lack scalability with respect to 

network bandwidth and delay since increases in either quantity de-couples the 

congestion site and endpoint. The larger the end-to-end delay in a network, the longer 

until the endpoint can determine that the network has become congested. The higher 

the bandwidth of the network, the larger the amount of data the endpoint may send 

into a congested network in the time it takes the endpoint to detect the congestion.  

 

Active networking, with the idea of reprogramming routers with data packets, 

can be used to address this shortcoming of feedback control. Active Congestion 

Control moves the endpoint congestion control algorithms into the network where 

they can immediately react to congestion. The current state of the sender's feedback 

algorithm is included in every packet. When a router experiences congestion, the 

router calculates the new window size that the sender would choose if it had instantly 

detected the congestion. The router then informs the endpoint of its new state. 
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Internal network nodes beyond the congested router see the modified traffic from the 

router, which seems as if the endpoint had instantly reacted. 

 

Active congestion control reduces the duration of each congestion event, and 

since fewer endpoints experience congestion during each congestion event, it 

improves the aggregate throughput. This is very effective in high-speed networks 

(which have a high bandwidth-delay product). Further, since fewer endpoints see 

congestion in ACC, and hence reduce their sending rate, the oscillations of the system 

as a whole is reduced. 

Active Congestion Control Framework  

 
 

 

 

 

 

 

 
 

Figure 2: An active congestion control network during congestion 
 

Consider the situation depicted in Figure 2. The packet streams from A and B pass 

through a router D, on the way to the destination C, congesting D. The flow of the 

packet streams is depicted by the arrows in the figure.  In the conventional feedback 

system, A or B will detect congestion, either when they receive notification from the 

congested router, or when they deduce the existence of congestion due to packet loss 

or excessive delays. By the time A has realized that D is congested, it has spent at 

least the propagation delay from A to D and back, sending packets as though the 

network were uncongested, thereby making the congestion worse. 
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 This delay is removed under ACC. Router D has been programmed by the 

first packet of the connection with instructions on how to react to congestion, and 

subsequent packets include information on the current state of the endpoint's 

congestion control algorithm. When D detects the congestion, it decides what action 

the endpoint would take if it had detected congestion in the state reflected by its most 

recent packet. The router then installs filters that either delete packets that the source 

would not have sent or perform some action on the packets, as specified by the user, 

provided the resources are allowed. These filters may be installed at the congested 

router's interfaces or at those of neighboring routers (F1 or F2). Finally, the congested 

router sends a message to the sender telling it the new state of its congestion control 

system.  
 

The formats of the messages in ACC are discussed in detail in the subsequent 

chapters. 

 

Router Algorithms 
 

Considerable research has been done on Internet dynamics and it has become clear 

that TCP congestion avoidance mechanisms, while necessary and powerful, are not 

sufficient to provide good service in all circumstances. Basically, there is a limit to 

how much control can be accomplished from the edges of the network. Some 

mechanisms are needed in the routers to complement the endpoint congestion 

avoidance mechanisms.  

The router algorithms related to congestion control can be classified into two classes - 

queue management and scheduling algorithms. Queue management algorithms 

manage the length of packet queues by dropping packets when necessary or 
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appropriate, while scheduling algorithms determine which packet to send next and are 

used primarily to manage the allocation of bandwidth among flows.  

 
Active Queue Management 
 

The traditional technique for managing router queue lengths is to set a maximum 

length for each queue, accept packets for the queue until the maximum length is 

reached, then reject subsequent incoming packets until the queue decreases because a 

packet from the queue has been transmitted. This technique is known as tail drop, 

since the packet that arrived most recently is dropped when the queue is full. This 

method has the disadvantage of lockout, wherein a single or few connections 

monopolize queue space. Another drawback is that it allows queues to maintain a full 

status for long periods of time, since tail drop signals congestion only when the queue 

has become full. These drawbacks are overcome using RED, an active queue 

management discussed in the Introduction chapter. The advantages of active queue 

management for responsive flows are summarized below: 

�� Reduction of the number of packets dropped in routers 

By keeping the average queue size small, active queue management provides greater 

capacity to absorb bursts without dropping packets. It is noted that while RED can 

manage queue lengths and reduce end-to-end latency even in the absence of end-to-

end congestion control, RED will be able to reduce packet dropping only in an 

environment that continues to be dominated by end-to-end congestion control. 

�� Lower-delay interactive service 

By keeping the average queue size small, queue management reduces the delays seen 

by flows. This is particularly important for interactive applications such as short web 

transfers, telnet traffic, or interactive audio-video sessions, whose performance is 

better when the end-to-end delay is low. 

�� Lock-out behavior avoidance 
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Active queue management prevents the lockout behavior by ensuring that there will 

almost always be a buffer available for an incoming packet.  

 
Policies of a router 
 

There is a range of policies that a router might use to identify which high-bandwidth 

flows to regulate. For a router with active queue management such as RED [10], the 

arrival rates of high-bandwidth flows can be efficiently estimated from the recent 

packet drop history at the router. Because the RED packet drop history constitutes a 

random sampling of the arriving packets, a flow with a significant fraction of the 

dropped packets is likely to have a correspondingly significant fraction of the arriving 

packets. Thus, for higher bandwidth flows, a flow’s fraction of the dropped packets 

can be used to estimate that flow’s fraction of the arriving packets. The policies for 

regulating high-bandwidth flows range in the degree of caution. One policy would be 

only to regulate high-bandwidth flows in times of congestion when they are known to 

be violating the expectations of end-to-end congestion control, by being either 

unresponsive to congestion or exceeding the bandwidth used by any conformant TCP 

flow under the same circumstances. In this case, an unresponsive flow could either be 

restricted to the same bandwidth as a responsive flow (the more cautions approach), 

or could be given less bandwidth than a responsive flow (the more powerful but less 

cautious approach). 

Another observation to be considered is that TCP congestion avoidance is not 

sufficient to provide good service in all circumstances and that, because of limitations 

on what can be accomplished purely on an end-to-end basis, mechanisms are needed 

in routers to enhance end-to-end control. The RED-manifesto suggests using active 

queue management and more specifically the RED packet dropping scheme to 

prevent lockout, where one connection monopolizes the link and to prevent global 

synchronization of windows, which can happen in a FIFO buffer when a burst of 

packets arrive to a full buffer due to packet drops from all flows.  
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Some issues of significance in the active router are the decision frequency and the 

decrease algorithm. 

�� Decision Frequency 

The decision frequency component decides how often to change the window. 

Changing it too often leads to unnecessary oscillations, whereas changing it 

infrequently leads to a system that takes too long to adapt. Based on the system 

control theory, the optimal control frequency depends on the feedback delay, that is, 

the time between applying a control and getting feedback from the network 

corresponding to this control. 

In networks, it takes one round trip delay for the new window size to take effect and 

another round trip delay for the resulting change to be fed back from the network to 

the users. This has generally restricted the window size adjustment to have at least 

two round trip delays.  

 

�� Decrease Algorithm 

The purpose of this algorithm is to determine the amount by which the window 

should be changed once a decision has been made to adjust it. The decrease is 

generally a function of the past history, that is, the window used in the last cycle. 

Hence, the state information in the packets plays a crucial role in the decrease 

algorithm, and the congestion control/avoidance scheme. The decrease algorithm is 

governed by the following goals: 

Efficiency   : The system bottleneck should be operating at the knee. 

Fairness : The users sharing a common bottleneck should get a 

fair ratio of throughput. 

Minimum convergence time : The network should reach the optimal (fair as well as 

efficient) state as soon as possible, starting from any 

state. 
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Minimum Oscillation size : Once at the optimal state, the user windows oscillate 

continuously below and above this state. The algorithm 

should be such that the oscillation size is minimal. 

Terminology  
 

 The terms that are used to describe the Composition of the Active Congestion 

Control Framework are described below: 

 

Component 

 A component is defined as an entity that implements a piece of functionality 

[26]. It can be combined with other components to form protocols. 

 

Active router 

 Any router in the active network, having the active functionality is defined as 

an active router. 

 

Service 

 This is the functionality available in the network, through the use of one or 

more of the components. 

 

Active Host/User 

 An entity which can interact with the active router and which uses the service 

provided by the active router. 

 

In the next section we look at the various components in Active Congestion Control 

System.  
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Components in Active Congestion Control System 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Components of the Active Congestion Control Framework 
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Figure 3 shows the various components of the Active Congestion Control Framework 

and their interaction. The components that have been identified in the ACC system 

are listed below: 

 
Active Host 

 

This sends the message and reacts to the feedback from the active router. In our 

model, the hosts have two levels of authentication: (1) The hosts can either trust the 

Service manager, in which case the hosts don’t invoke the Authentication server, or 

(2) The hosts don’t trust anyone and invoke the Authentication server to first check 

the authenticity of the Service manager. 

 

Service Manager 
 

This receives the message from the hosts and then sends the packet to the 

authentication server for verification. If the host is identified to be authentic, it 

transfers the packet to either the Filter Control Manager or the RED router 

(Congestion Detector), depending on whether it is a control message type or data 

message type. It also directs the Filter Control Manager to uninstall the filter. This 

happens in two scenarios. The service manager has timeouts for each flow. When a 

flow is inactive for long, it sends an uninstall message to the Filter Control Manager 

(FCM). It also sends an uninstall message to the FCM when an explicit request is 

made by a sender to change the filter. 

 
Authentication Server 

 

The authentication server is invoked by the Service Manager to verify the authenticity 

of the sender. Further, the hosts also invoke it, if the hosts look for extra 

authentication and don’t trust the service manager. In our design, we have made the 

provision for both the situations, that is, when the host trusts the service manager and 
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when it doesn’t, called the non-trusting hosts. The non-trusting source verifies the 

authenticity of the service manager.  Authentication is done in three stages:  

(1) Source Authentication, where it is verified that the source of the message is 

indeed what is mentioned in the packet. 

(2) Integrity Check, where the integrity of the message is checked, thereby verifying 

that the message is not modified in transit. 

(3) Source Reliability, where the source is checked for misbehaviors in the past. 

 

The authentication server either uses public key cryptography or secret key 

cryptography for authentication. One way to do provide security is to use a trusted 

node known as a Key Distribution Center (KDC), which uses secret keys. The KDC 

knows the keys for all the nodes in the networks. If a new node is installed in the 

network, only that new node and the KDC need to be configured with a key for that 

node.  The public key cryptography based scheme has a trusted node known as a 

Certification Authority (CA), that generates certificates, which are signed messages 

for each node or entity and the corresponding public key. All the nodes will need to 

be preconfigured with the Certification Authority's public key so that they can verify 

its signature on certificates. Certificates can be stored in any convenient location, 

such as the directory service, or each node can store its own certificate and furnish it 

as part of the authentication exchange. To scale the authentication schemes further up, 

we can use multiple KDC and CA domains, where the world is broken into domains 

and each domain has one trusted administration.  

 

The authentication server also provides message integrity. In the public key based 

method, the sender computes the hash of the message (using MD5, maybe) and then 

signs the message digest using her private key, since computing a message digest is 

faster than public key operations and since the message digest is usually a smaller 

quantity to sign than the message. In the secret key based method, the Message 

Integrity Check is calculated, which is the encrypted message digest, where the 
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message digest is encrypted with the shared secret key between the sender and the 

Central authority. 

 

Finally, the authentication server makes sure that the sender hasn’t misbehaved in the 

past, by checking a database that it maintains, containing the misbehaved hosts. This 

list contains hosts that either tried to hog the resources or tried to act as imposters. 

 

Once the three stages of authentication is successful, the authentication server sends a 

message back to the requesting component, stating the success of the request. If the 

request fails at any of the stages, it sends a failure status, with details about the stage 

in which the failure occurred. 

 

Congestion Detector  
 

This is a sub-component of the router. Data packets arrive here after the sender is 

verified to be authentic. Two of the possible types are 

�� Drop tail router 

Here, the parameter that determines congestion is the buffer size. When the buffer is 

full, the router starts dropping the packets. 

�� RED router 

The RED router discards packets before its queue is full. It picks a random packet to 

discard. The probability that an arriving packet is marked for discard is proportional 

to the amount that the router's current queue length exceeds a threshold. In our model, 

we have modified the RED router to send the packets to the congestion controller, 

instead of discarding it. The congestion controller's operation is discussed in the next 

sub-section. Thus, the router provides the functionality of a RED router, with 

additional enhancements instead of dropping the packets, and it provides congestion 

avoidance. 
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The RED router calculates the average queue size, using a low-pass filter with an 

exponential weighted moving average.  The average queue size is compared to two 

thresholds, a minimum threshold and a maximum threshold.   

 When the average queue size is less than the minimum threshold, no packets 

are marked.  When the average queue size is greater than the maximum threshold, 

every arriving packet is marked.  If marked packets are in fact dropped, or if all 

source nodes are cooperative, this ensures that the average queue size does not 

significantly exceed the maximum threshold.  When the average queue size is 

between the minimum and the maximum threshold, each arriving packet is marked 

with probability pa, where pa is a function of the average queue size average.  Each 

time that a packet is marked, the probability that a packet is marked from a particular 

connection is roughly proportional to that connection's share of the bandwidth at the 

gateway.  The general RED gateway algorithm is  

For each packet arrival  

 Calculate the average queue size avg. 

 If minth <= avg. < maxth  

     Calculate probability pa  

     With probability pa: 

  Mark the arriving packet 

 Else if maxth <= avg. 

  Mark the arriving packet. 

 

Thus the RED gateway has two separate algorithms.  The algorithm for computing 

the average queue size determines the degree of burstiness that will be allowed in the 

gateway queue. The average queue size is calculated every time a packet arrives or 

periodically after an interval. It is found as follows, using an exponential weighted 

moving average, where wq is the weight associated with the current queue size: 

 Average queue size avg_q = (1 - wq) * prev_avg_q  + wq * current_q_size 
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The optimum values of minth and maxth depend on the desired average queue size.  

The RED gateway functions most effectively when maxth - minth is larger than the 

typical increase in the calculated average queue size in one roundtrip time. 

 The algorithm for calculating the packet-marking probability determines how 

frequently the gateway marks packets, given the current level of congestion. The 

packet-marking probability, pb, is calculated as  

pb  = maxp * (avg_q - minth)/( maxth - minth) 

where = maxp is the maximum probability for a packet to be dropped. The goal is for 

the gateway to mark packets at fairly evenly spaced intervals, in order to avoid biases 

and to avoid global synchronization, and to mark packets sufficiently frequently to 

control the average queue size. The marked packets are then forwarded to the 

congestion controller. 

 

Congestion Controller  
 

This is also present at the router - this performs the following operations:  

1. Calculates the correct window size for the source from the state information in the 

current packet (Using TCP's window adjustment algorithm, the new window is 

half the old). 

2. Sends a packet with the new window size to the source and 

3. Forwards the packet to the Correction Filter, through the Filter Control Manager. 

 
Filter Control Manager 
 

The Filter Control Manager contacts the Resource Allocation Manager, to make sure 

that the resources required are available and are not exploited by a single user. It then 

installs a filter at the active router's interface. It also takes care of uninstalling a filter, 

which occurs either because a particular session is idle for too long and a time-out 

occurs or due to explicit request from the sender, requesting a change in the type of 

filter installed. There is also the option of installing the filter in any router in the path 
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between the sender and the current active router. In this case, the filter control 

manager locates the cooperating routers in the process of filter installation, with the 

help of the resource allocation manager. 

 

Resource Allocation Manager 
 

This module makes sure that the resources are available for the particular request. It 

also makes sure that any host doesn’t hog the resources. It also takes care of pre-

emption of the allocated resources, depending on the priority of the new request. It 

takes into consideration the number of requests from a host, the requested processor 

and memory allocation requirements, whenever a resource allocation request is made. 

It is the task of the resource allocation manager to identify the nodes that allow the 

installation of the filter, in case the filter is installed in a router along the path 

between the sender and the active router.  

 

 

 
Correction Filter  
 

The default filter, which the most rudimentary form of the filter, deletes all packets 

from that endpoint until it begins to act on the router's feedback.  Since TCP responds 

to only one packet drop per round trip time, packets dropped by the filters will not 

cause endpoints to close their windows more quickly than they would, in the face of a 

single packet drop. A more sophisticated filter would delay endpoint packets so that 

they appear to the congested router to have been sent by a slow-starting endpoint or 

do some sort of traffic editing. An example of traffic editing can be applied in video 

transmissions. Currently, only the source can adapt the encoding of video 

transmissions. Video congestion controls could recode video transmissions at the 

previous uncongested router, thereby providing faster response than waiting for the 

source to reduce transmission quality. 
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Finite State Machine Model 
 

The state transition based models [27] represent a network protocol in terms of a 

finite state machine. The finite state machine is the simplest and most general tool for 

computing. It has a number of states and it interprets an input symbol and produces an 

output based on the input and the state the machine currently exists in. 

 

In the previous section, we saw the components that are part of the Active Congestion 

Control Framework. In this section, we have presented each component as a finite 

state machine model. The finite state machine model is useful for verifying the 

correctness of a protocol model specification. The model is decomposed into a set of 

states and the working of the model is embedded in the transitions between the states. 

The correctness of the model is verified by validating that for any set of valid inputs 

to the machine, the Finite State Machine Model generates correct outputs and/or 

proceeds to valid termination states.  

 

In the finite state machine models, the oval shape represents the state of the machine 

and the arrows indicate the actions that cause the transitions from one state to another. 



  
  

47

 

Service Manager 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4: Finite State Machine for Service Manager 
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State 

 
Explanation 

Wait The Service Manager is waiting for incoming packets. 

Authenticate The Service Manager sends a message that needs to be 

authenticated to the Authentication Server. 

Install The Service Manager directs the Filter Control Manager 

to install the filter, by providing the required 

information. 

Uninstall The Service Manager directs the Filter Control Manager 

to uninstall the filter. This may either be due to a 

timeout or an explicit request from a sender regarding 

changing the filter. 

Send Packets are sent towards the destination. 

Fail Failure occurs in various states, namely, authenticate, 

install or due to corrupted packets. 

 

Table 1: States in FSM for Service Manager 
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Transition Event 

 
Explanation 

 

1 

 

The Service Manager receives a message. 

 

2 

 

The authentication of the message is successful. 

 

3 

The filter service is preempted because of the request for 

resources with a higher priority. 

 

4 

There is a timeout at the Service Manager, due to inactivity in a 

particular process. 

 

5 

An explicit request is made by a sender to change the type of 

filter used, and this request is authenticated. 

 

6 

The filter is uninstalled, and the resources associated with it are 

released. 

 

7 

 

Authentication of a message failed. 

 

8 

Successful installation of the filter followed by subsequent 

packets being sent by the Service Manager. 

 

9 

 

Packets not sent due to corrupted bits. 

 

10 

 

Packet was not sent (Failure) and the Service Manager waits for 

the next request. 

 

11 

Packets sent successfully and the Service Manager waits for the 

next request. 
 

Table 2: Events in the FSM for Service Manager 
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Congestion Detector 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Finite State Machine for Congestion Detector 

 

 
State 

 
Explanation 

Wait The Congestion Detector is waiting for incoming 

packets. 

Send The Congestion Detector sends packets towards the 

destination host or to the Congestion Controller. 

Mark The packet is marked with a probability depending on 

the Active Queue management algorithm and sent to the 

Congestion Controller. 

Fail Failure due to corrupted packets. 

 

Table 3: States in FSM for Congestion Detector 

  Wait 

  Send 

 Mark 

  Fail 

1 

2 
3

5

6
4 

7



  
  

51

 
Transition Event 

 
Explanation 

 

1 

 

The packet arrives. 

 

2 

The packet sent successfully. (didn’t cross the minimum 

threshold level) 

 

3 

 

The packet is above the minimum threshold, and hence, can be 

marked depending on the probability and also depending on 

whether it is above the maximum threshold or not. 

 

4 

 

The packet is sent to the congestion controller. 

 

5 

 

The packet couldn’t be sent to the destination. 

 

6 

 

The packet couldn’t be sent to the Congestion Controller. 

 

7 

 

Failure to send packets due to corruption of bits. 
 
 

Table 4: Transition Events in FSM for Congestion Detector 
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Congestion Controller 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Finite State Machine for Congestion Controller 
 
 
 
 
 
 

 
 

State 
 

Explanation 

Wait The Congestion Controller is waiting for incoming 

packets. 

Send The Congestion Controller sends packets to the 

Correction Filter, through the Filter Control Manager. 

Fail Failure due to corrupted packets. 

 

Table 5: States in FSM for Congestion Controller 
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Transition Event 

 
Explanation 

 
1 

 

The packet arrives. 

 
2 

The Congestion Controller sends the packet to the filter and 

another packet indicating the current state to the source. 

 
3 

 

The packet couldn’t be sent to the filter. 

 
4 

 

Failure to send packets due to corruption of bits. 
 

 

Table 6: Transition Events in FSM for Congestion Controller 
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Filter Control Manager 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Finite State Machine for Filter Control Manager 
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State 

 
Explanation 

Wait The Filter Control Manager is waiting for incoming 

packets. 

Resource Check The Filter Control Manager (FCM) contacts the 

Resource Allocation Manager to make sure that there is 

sufficient resource for the request. 

Install The Filter Control Manager installs a new filter, by 

providing the required information. 

Uninstall The Filter Control Manager uninstalls a filter. This may 

either be due to a timeout or an explicit request from a 

sender regarding changing the filter. 

Send Packets are sent through the Correction filter installed. 

Fail Failure occurs due to installation failure or due to 

corrupted packets. 

 

Table 7: States in FSM for Filter Control Manager 
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Transition Event 
 

Explanation 

 
1 

 

A request for filter installation from Service Manager received. 

 
2 

 

The Resource allocation Manager approved the request. 

 
3 

 

The filter is installed successfully. 

 
4 

A request for filter uninstallation is made either due to inactivity 

in a particular process or due to explicit filter change request 

from sender. 

 
5 

The filter is uninstalled, and the resources associated with it are 

released. 

 
6 

 

The packet is to be sent through the existing filter. 

 
7 

 

The packet is successfully sent through the filter. 

 
8 

 

Installation of the filter failed. 

 
9 

 

Packet is corrupted and hence couldn’t be sent through the filter. 

 
10 
 

 

Resources are not available for the requested Filter Control. 

 
11 

 

Failure to send the packet and back to the wait state. 
 
 

Table 8: Transition Events in FSM for Filter Control Manager 
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Authentication Server 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Finite State Machine for Authentication Server 
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State 

 
Explanation 

Wait Waits for the Authentication Request. 

Source 

Authentication 

A check is made to verify whether the source of the 

message is indeed what is mentioned in the packet. 

Integrity 

Check 

The integrity of the message is checked, to make sure 

that the message is not modified while in transit. 

Source 

Reliability 

A check is made to find if the source is reliable.  

Fail Failure occurs due to failure in source authentication, 

integrity check or source reliability. 

 

Table 9: States in FSM for Authentication Server 
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Transition Event 
 

Explanation 

 

1 

 

A request for authentication is received. 

 

2 

 

Source Authentication is successful. 

 

3 

 

Integrity check is successful. 

 

4 

 

The source is found to be reliable.(trusted source) 

 

5 

 

Source Authentication has failed. 

 

6 

 

Integrity check has failed. 

 

7 

 

The source is found to be unreliable. This might be either 

because the source is unknown or because it had misbehaved in 

a previous instance. 

 

8 

 

A message is sent to the component that made the authentication 

request, with a failure status. 
 

 

Table 10: Transition Events in FSM for Authentication Server 
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Features of Active Congestion Control scheme 

 
 
Dynamism: Network traffic and configurations vary continuously. The optimal 

operating point is therefore a continuously moving target. This scheme dynamically 

adjusts according to the traffic conditions, based on the state information. 

 

Minimum oscillation: The oscillations in the window sizes are reduced, since the 

active router avoids roundtrip delays. 

 

Convergence: Since there are minimum oscillations, the system reaches convergence 

faster. 

 

Robustness: The active router takes care of widely varying service-time 

distributions. 

 

Summary 

 
In this chapter, we have discussed the various issues in router policies and congestion 

control/avoidance and have proposed a model for active congestion control. We have 

also looked at the terminology used in the framework and the various components in 

detail along with the finite state machine model of each component. Further, the 

states and the transition events in each finite state machine model have been 

explained. In the next chapter, we look at the spin model, with the message 

parameters in the model along with the verification results. 
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Chapter 5: Specification and Verification of the Active 
Congestion Control Framework 
 

In the previous chapter, we have looked at the Framework for Active Congestion 

Control and have also looked at how the individual modules interact with each other. 

This chapter deals with the further details about the modules, including the message 

parameters and the terminology used. 

 

Message Parameters 
 

There are different types of messages exchanged between the different modules in our 

proposed framework. These messages have several parameters, which are discussed 

below: 

 
Packet type 
 

This carries information about the type of packet. This can be data packets, which just 

carry data, and the state information or the acknowledgement packets from the 

receiver to the sender or the control packets. There are several service request 

packets, like the filter installation request packets, filter update packets, resource 

allocation packets etc. 

 

Process ID 
 

This is used to differentiate between the various processes from the same source, but 

which might use different filters. 

 

 
Authentication ID 
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This field, carries information required to authenticate the sender. In Certificate 

Authority based authentication, this carries the certificate. In the case of Key 

Distribution Center based authentication, it is the ticket. This field is used by a 

component when communicating with the authentication manager. The authentication 

manager would then decide whether the message is valid or not and send the response 

to the receiver. 

 

Sequence Numbers 
 

Sequence numbers are provided in the packets, which are used for flow control. 

 

State Information 
 

This carries the state information of the sender, which in our case, is the sending 

window size. 

 
Filter Setup Priority 
 

Each source is associated with a priority. When a source requests a particular type of 

filter, if the resources available are insufficient for this filter, this setup priority is 

compared with the holding priority of the currently active filter. If this setup priority 

is higher, the current filtering operation is preempted to free the required resources. 

The resource manager takes care of this. 

 

Filter Holding Priority 
 

Each source is also associated with a holding priority. As explained before, if the 

available resources are not sufficient for a particular type of filter, the setup priority is 

compared with the holding priority. 

 

Source/Destination Address 
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These fields indicate the source and destination address. The address could be an IPv4 

or an IPv6 address. The address should be encoded as a TLV, where the type and the 

length field indicate the type of address. 

 

Component ID 
 
Each of the components in the model has a component ID, which is used for unique 

identification. 

 

Failure Information 
 

While processing a message, if an error is encountered, a notification message is sent 

to the sender. Some additional information is provided along with the notification 

message, such as, information about the resources used or authentication failure etc. 

 

Miscellaneous Attributes  
 

In addition to the fields mentioned above, there is additional information that needs to 

be sent. Some of these situations are mentioned below: 

 

�� When the value of certain parameters received in a message are not acceptable, 

the receiver needs a mechanism to negotiate the value of those parameters with 

the sender 

�� When the sender needs to modify something, say the type of filter installed for a 

particular session; it needs to convey this message to the Active Router. 

 

Packet Header 
 



  
  

64

Every packet has the message type, message length, source / destination address, the 

process ID and the authentication Info in addition to the message being sent. These 

fields comprise the Common Packet Header that accompanies all the messages. 

 

Message Encoding 

 
The various fields mentioned above are encoded as Type/Length/Values (TLVs) as 

compared to static encoding. There are several advantages of using TLV encoding 

over the usual static encoding of the packet fields. New TLVs can be added or 

removed as and when needed by the service. Thus, TLV encoding is very suitable for 

the deployment of composable services. But TLV has the overhead of increasing the 

processing time. Yet, it is better that the conventional static encoding, as it is more 

flexible and hence more efficient when used in protocols that are expected to change. 

Further, static encoding also has the problem of requiring a specific format, and bit 

padding, in cases, which is not present in TLVs. 

 

Common Error Conditions 
 

 Here, the various conditions that might lead to failure are discussed. When a 

packet is processed, there might be failure due to  

 

(1) Resource Unavailable 

(2) Authentication Failure 

(3) Filter Installation Failure  

(4) Errors due to corrupted packets 

(5) Timeout errors 

(6) Service Preemption Errors 
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Formal Model 
 

The framework is modeled in SPIN and its behavior is verified. The components 

interact with each other through the information and control messages passed through 

the communication channels. 

 

The following properties are assumed to hold true in the system: 

 

A1 : No component changes the value of a variable while it is in use by another 

component. 

 

A2 : The execution of the components in a framework is sequential. This prevents 

simultaneous execution of two components in a framework on the same node. 

 

A3 : The components or entities communicate through duplex channels. 

 

A4 : Every component may define additional constraints on the state of the 

environment. 

 

A5 : Read-write access is restricted to certain variables. One such example is the 

Authentication ID. 

 

A6 : The Authentication Server is trusted by all components. 

 

A1 and A2 avoid race conditions to enable interactions between components to be 

well defined. Assumption A3 enables asynchronous communication between the 

components. A4 states that a component verifies its assumptions about the 

environment by imposing constraints.  
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Now we define the correctness of the composition by defining the following 

requirements: 

 

C1 : In every state, all constraints set on the current state by components are 

satisfied.  

 

C2 : The system has no states that are unreachable. 

 

C3 : Every component either eventually relinquishes control or makes 

progression.  

 

 The first condition prevents components from changing the system 

environment in an irresponsible manner. The last two conditions assert that a 

composition is complete and structurally sound, that is, it has exactly all the necessary 

components.  

 

System Specification 
 

Verification in SPIN involves defining the model in its input language, Promela. The 

Promela program is fed to the SPIN model checker that tests the correctness, 

completeness and consistency of the composition. The graphical interface, Xspin is 

used for verification. 

 

In this section, we outline the salient features of our specification. We discuss how 

the system is modeled, how the components are defined and how their properties are 

specified for later verification. We describe the verification techniques used by SPIN 

to test the models and describe the verification of the various properties of the model.   

 
 
System Model 
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The system model consists of the specifications of the components that comprise the 

active congestion control framework. The environment provides the framework with 

possible inputs (hosts, in our case) to test the behavior of the framework and 

determine its correctness. Events such as resource unavailable, authentication failure, 

corrupted packets and timeout errors have been modeled in our specification.  

 

Defining the Components in the Active Congestion Control Framework 
 

Every component is defined as a separate entity in Promela. A component’s interface 

and behavior are specified using Promela language constructs. Promela does not 

provide the notion of objects; therefore we model each component in SPIN as a 

process, defined by the keyword proctype.  

Symbolic Constants 
 

The message types are declared as symbolic constants using mtype. The message 

types used in our model are 

mtype = {  snd_data,    // Send Data 

  snd_ack,    // Send Acknowledgement 

  auth_req,    // Authorization Request 

  auth_rep,     // Authorization Reply 

  filter_install_req,   // Filter Installation Request 

  filter_install_rep,   // Filter Installation Reply 

  filter_uninstall_req,   // Filter Uninstallation Request 

  filter_uninstall_rep,   // Filter Uninstallation Reply 

  filter_update_req,   // Filter Update Request 

  filter_update_rep,   // Filter Update Reply 

  res_alloc_req,    // Resource Allocation Request 

  res_alloc_rep,    // Resource Allocation Reply 
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  decr_snd_wnd,   // Decrement Send Window 

  misc,     // Miscellaneous message 

  unidentifiable    // Unidentifiable message 

  } ; 

 Only one mtype-definition is allowed which must be global and at most 256 

symbolic constants can be declared. The advantage of mtype over #defines is that the 

former type of symbolic constants is recognized by SPIN and during simulations the 

symbolic names are used instead of the values they represent [28, Rob Gerth]. 

 

Structures  
 

 User-defined data types are supported through typedef definitions. We have 

defined several data types, such as  

typedef filter_update_pkt { 

  mtype msgtype; 

 byte flt_id; 

 byte src_id; 

 byte auth_id; 

 byte setup_prio; 

 byte hold_prio; 

 byte result; 

 } ; 

Variable declarations are done using this type definition as filter_update_pkt flt_pkt; 

The elements of this structure are accessed as in C, like,  flt_pkt.flt_id. 

  

Processes  
 

The process declaration has the form  

   Proctype process_name (parameters) 
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 { 

 Statements 

 } 

The processes are instantiated by a run operation: 

 Run process_name(parameter values) 

 

Message Channels 
 

The various processes communicate with each other through channels.  One such 

example is  

Chan host_svcmgr[2] = [0] of { data_pkt }; 

Here host_svcmgr is an array of channels; each channel is synchronous, that is, sends 

and receives must synchronize as no messages can be stored. 

 

Atomic Statement 
 

The atomic statements are executed in one indivisible step; i.e. without interleaved 

execution of other processes. An extract from our model, where we have defined an 

atomic statement, and hence is executed without interleaved execution of other 

processes is: 

atomic { 

auth_svr[0]!auth_pkt; 

  auth_svr[1]?auth_pkt; 

  if 

     :: auth_pkt.result == 1; 

        authent_fail = 0; 

        flt_pkt.auth_id = svc_id; 

     to_fcm!flt_pkt; 

     from_fcm?flt_pkt; 
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     if 

     :: flt_pkt.result == 1; 

     flt_installed = 1; 

     :: skip; 

     fi; 

     :: authent_fail = 1; 

     fi; 

 } 

 

An atomic statement is enabled if its first statement is. During its execution, control 

can only be transferred outside the scope of an atomic statement by an explicit goto or 

at a point where a statement within its scope becomes blocked. If this statement 

subsequently becomes enabled again, execution may continue at that point. There is 

no constraint on what may occur inside the scope, other than that no nested atomic is 

allowed. In particular, it is possible to jump to any labeled location within the scope 

of an atomic.  

 

Non-deterministic selection statements  
 

The statement  

 If 

 ::  statements 

 ::  statements 

 fi 

selects one among its options, each of which starts with a :: and executes it. An option 

is selected if its first statement is enabled. A selection blocks until there is at least one 

selectable branch. If more than one option is selectable,  one will be selected at 

random. This non-determinism is used to model several features in our model, such as 

error messages. One such example is  
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 if 

      :: flt_pkt.msgtype = filter_install_req; 

      :: flt_pkt.msgtype = filter_uninstall_req; 

      :: flt_pkt.msgtype = filter_update_req; 

      :: flt_pkt.msgtype = unidentifiable; 

      fi; 

 

Since all of the above statements following the :: are assignment statements, one of 

them is chosen in random and the message type is assigned.  

 

Repetition Statements 
 

The repetition statements are modeled as  

 do 

 ::   statements 

 ::  statements 

 do; 

 

These statements are similar to a selection statement, except that the statement is 

executed repeatedly, until control is explicitly transferred to outside the statement by 

a goto or break. A break will terminate the innermost repetition statement in which it 

is executed and cannot be used outside a repetition. These statements are used in our 

model to represent the functionality of many processes, such as service manager and 

hosts. 

 

Temporal Claims 
 

Temporal claims are defined by Promela never claims and are used to detect 

behaviors that are considered undesirable or illegal.   
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A simple example of the never claim in the model is  

never { 

 do  

 ::  authent_failure->break; 

 :: skip; 

 od; 

 do 

 :: flt_installed; 

 od; 

} 

 

When checking for state properties, the verifier will complain if there is an execution 

that ends in a state in which the never claim has terminated, i.e., has reached the 

closing braces of its body. When checking for acceptance cycles, the verifier will 

complain if there is an execution that visits infinitely often an acceptance state. Thus, 

a temporal claim can detect illegal infinite behavior by labeling some statements in 

the never claim with an acceptance label. 

A never claim is intended to monitor every execution step in the rest of the system for 

illegal behavior and for this reason, it executes in lock-step. Such illegal behavior is 

detected if the never claim matches along a computation. If a claim blocks ( because 

no statement in its body is enabled) but it is not at its closing  braces, then there is no 

need to explore this computation any further because it cannot lead to a violation. 

  
 

Verification of Properties using SPIN 
 

SPIN is used to perform on-the-fly verification of the Promela specification generated 

for the system. SPIN enables verification of liveness and safety properties as well as 

temporal properties of the model. In SPIN, the verification of these two classes of 

properties is performed separately. 
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Verification of safety properties involves checking for correctness and completeness 

of the composition. This implies checking for any assertion violations and testing for 

any unreachable code or unspecified receptions. Verification of liveness properties 

involves ensuring that the system does not enter into any deadlock or livelock, or 

non-progress execution cycles. Temporal properties can be defined and verified to 

ascertain specific behavioral properties of the model. These linear time temporal 

constraints are verified using never-claims.  

 
 
Correctness and Completeness Verification 
 

Correctness of a composition requires that the composition be structurally sound, that 

is, the framework model meets requirements C1-C3. This ensures that all component 

interfaces are invoked correctly, there is no violation of read/write sequence and all 

constraints set by the components are satisfied.  

Checking the syntax of the specification enables us to catch any incorrect calls to 

component interfaces. Testing the model for safety properties automatically flags any 

violation of the write/read sequence for packet variables. Component constraints are 

written in the form of assert statements. Therefore, any violations of the constraints 

placed by the module are also flagged while checking for safety properties. Checks on 

the safety properties of the system describe what is allowed to happen. However, just 

because safety properties hold, that is, nothing bad happens, it does not guarantee that 

anything does happen. Liveness restricts the long-term behavior of the system by 

specifying what must eventually happen. Progress must be guaranteed, that is, there 

are no deadlocks or livelocks. None of the flows should end in a state from which 

there is no progress. In our framework, every component either progresses to 

completion or to an explicitly marked acceptance cycle. The SPIN verifier catches the 

halted progress conditions by checking the model for non-progress cycles. The SPIN 

verifier also checks to see if the composite has unreachable code, that is, states that 

the system never gets into.  
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Verification of Temporal Properties 
 

SPIN also checks correctness properties expressed in linear temporal logic (LTL). 

Temporal claims are properties of the type “ every state in which property P is true is 

followed by a state in which property Q is true”. There are two interpretations of the 

term “followed by”, depending on whether the state Q follows P immediately or 

eventually after. SPIN makes no assumptions of the relative timing of process 

executions. Therefore, the interpretation in SPIN is that Q “eventually” follows P. 

LTL properties are expressed as never claims to the system, i.e., they are used to 

formalize system behaviors that are claimed to be impossible. We can utilize LTL 

formulae to check correctness of temporal properties and consistency of the 

framework. Checking the correctness of temporal properties of the framework 

enables us to validate its operation. We have already seen an example of a temporal 

claim in the section under never claims. 

 

Verification Results 
 

The verification was carried out for a specification model with a simple setup where 

there are three hosts and a router. Further, the setup was modified to include other 

cases, so that the model is extensively tested.  

 

Increasing the number of hosts and routers 
 

The number of hosts and routers were increased in steps and the specified properties 

were found to hold true. 

 

Interleaving trusting and non-trusting hosts 
 



  
  

75

As mentioned earlier, the hosts can either trust the service manager or not trust the 

Service Manager. Both kinds of hosts were included in the model and the specified 

properties were verified. 

 
 
Changing the filter  
 

The default filter, where the  packets marked by the RED router are just dropped was 

used and then a more sophisticated filter, which dropped only the packets of lower 

priority was used. This also helped us to verify the composability of the components. 

 

Active and non-active hosts 
 

Both active and non-active hosts were used in the model and it was found that the 

model properties still held true and the system was verified. Further, only non-active 

hosts were modeled and the framework still functioned as expected, exhibiting 

compatibility with the existing network. 

 

Active And Non-active Routers 
 

The model was verified after replacing the active RED router with a tail-drop router. 

 

Observations 
 

The following observations were made from the various test cases that were verified: 

 

�� The state space and memory used for verification increases as the number of 

components in the system increases, as the complexity of the system increases. 
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�� In the absence of active hosts,  the framework functioned normally and the 

properties held true, thereby exhibiting compatibility. 

 

�� The framework has functionally separate components, and hence changing the 

filters was easy. 

 

Summary 
 

In this chapter, we defined the concepts of completeness, correctness and consistency 

for the active congestion control framework. We also defined the message parameters 

and the terminology used. The specification and verification of the system is 

described in detail, and the chapter ends with the verification results and observations. 
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Chapter 6 : Summary and Future Work 
 

 

Active networking provides a new paradigm of networking in which users are able to 

create and inject custom services and protocols in the network. This thesis presents a 

model for actively controlling congestion in the network. The properties of the active 

congestion control framework model for active networks are identified by studying 

the limitations of current models and analyzing requirements of the framework.   This 

thesis then describes the importance of verification in a Framework Model. 

 

This thesis identifies the various components in the proposed Active Congestion 

Control framework. We then describe the Finite State Machine Models for each of the 

components. The Finite State Machine explains the interactions with the various 

components and the events that follow the interactions. We then look at the various 

message types used in our model and the various fields described in the model. 

 

This thesis also describes the specification aspects of the proposed model. The 

components are specified using the SPIN verification system. The functionality of 

individual components are described as properties of the component using SPIN's 

input language called Promela. Various test cases are considered for the verification 

process. The SPIN verifier is used to check the correctness and completeness of the 

composed specification and the observations inferred from the results are discussed. 

 

The proposed framework is found to function and satisfy the specifications 

mentioned. We have just used the RED and tail-drop routers in our model. Other 

router models could be used and the framework could be tested. An implementation 

based on this framework would be a feasible future work. 
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